TERA is the first-of-its-kind eco-habitat | Photo source Al SpaceFactory

A 3D-PRINTED B&B MADE FROM RENEWABLE MATERIALS
ARCHITECTURE & DESIGN

TERA’s exterior shell is 3D-printed on-site, with a biopolymer basalt composite developed from crops like corn and sugarcane

Spotted: The multi-planetary architectural and technology design agency, AI SpaceFactory, has launched a first-of-its-kind eco-habitat, TERA. The agency developed TERA with the same design logic and 3D-printing technologies as its NASA-award winning Mars habitat, MARSHA. The 3D-printed B&B is offering a more sustainable solution to the way we build.

TERA’s exterior shell is 3D-printed on-site, with a biopolymer basalt composite developed from crops like corn and sugarcane. NASA’s testing found that the material outperformed concrete, and was found to be up to three times stronger and five times more durable in freeze-thaw conditions than concrete.

Inside TERA is a welcoming home-crafted interior made of birch and poplar, which evokes a treehouse feel offering comfort, while also maintaining a commitment to sustainability. Its various activity areas are perched on or nestled in a spiralling form that emerges from the landscape. The open-plan maximises daylight and air circulation, which are also further enhanced by energy-efficient LED lighting and underfloor heating.

TERA is based about an hour and a half away from New York City by train, tucked in the woods along the Hudson River and built on undisturbed natural lands. The current TERA location will be available for one year before it is recycled and reprinted elsewhere.

15th January 2020
Email: press@aispacefactory.com
Website: aispacefactory.com
Contact: twitter.com/AISpaceFactory
Takeaway:

The aim of TERA is to challenge the building industry’s harmful environmental impact, which generates 39 per cent of global carbon emissions and consumes 50 per cent of the world’s extracted resources. TERA could be paving the future for a new generation of sustainable buildings, which cause minimal environmental impact and eliminate the waste of unrecyclable materials.